Differential and Integral Equations Volume 9, Number 2, March 1996, pp. 305322

ANTIBIFURCATION AND THE r-SPECIES LOTKA-VOLTERRA
COMPETITION MODEL WITH DIFFUSION

ROBERT STEPHEN CANTRELL!
Department of Mathematics and Computer Science, The University of Miami, Coral Gables, FL 33124

(Submitted by: Klaus Schmitt)

Abstract. The system

n
— Al = (ak — U — Z ykjuj)uk in
sk, j=1 *

ur =0 on 98,

k=1,...,n, where Q is a bounded domain in R" and a, y; are positive parameters, determines the
possible equilibrium configurations for a diffusive Lotka-Volterra competition model and is of interest
in the study of the role of competition in structuring communities where space or resources are limited.
The componentwise nonnegative solutions to (+) can perhaps best be understood for fixed yi; and
varying a; as a subset of the Banach space R” x [Cé ($2)}*. The aims of this article are to enhance
understanding of the structure of this set and to provide a firmer foundation for future analysis. We
accomplish these aims through some new observations regarding the set of componentwise nonnegative
solutions to () which enable us to unify some preceding analyses.

1. Introduction. Systems of differential equations of the form

—diAug = ap(X)ug + ge(x, uy, ..., up)uy  in £

Bkuk =0 on 89, (11)
k=1,...,n, where Q is a bounded domain in R with smooth boundary 92 and By
represents a homogeneous boundary condition of Dirichlet, Neumann or Robin type,
have been the focus of an enormous amount of mathematical research in recent years.
One of the principal reasons for such active interest in (1.1) is that solutions to (1.1)
represent steady-state or equilibrium solutions to the corresponding reaction-diffusion
system

ug, = dpAug + ap()ug + ge(x, uy, ..., udug  in £ x (0, 00)

Biu =0 on 3K x (0, o). (1-2)

Systems of the form (1.2) in turn are important as mathematical formulations or models
of the dynamics of a community of interacting species, particularly so when spatial
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heterogeneity is taken into account. In such models u; (x, t) > O represents the pop-
ulation density of the k™ species in the community at position x in the habitat Q and
time ¢. Consequently, componentwise nonnegative solutions to (1.1) represent the pos-
sible equilibrium configurations of the model community. An initially zero component
indicates extinction of the species in question.

Systems of the form (1.1) are flexible enough to encompass a wide variety of mod-
eling assumptions. The local interaction terms g; can model competition, predation,
mutualism or various combinations thereof. Indeed, if the g; terms depend explicitly
on x, the type of model can depend on location within the overall habitat §2; for in-
stance, competition in some parts of  and mutnalism in others. The models can be of
Lotka-Volterra type (i.e., g is a linear combination of some or all of the u;) or of a more
general form. There may or may not be explicit x dependence in a; and gj.

In this article we are concerned with the special case of Lotka-Volterra competition
models with no x dependence, assuming each species competes with every other species
and exhibits self-regulation. We also assume that the boundary of the habitat  is lethal to
each species. Under these assumptions, (1.1) can without loss of generality be expressed
as

-—Auk = (le - U} Z ykjuj)uk in
J#k 1.3)
ury =0 on 082,

k=1,...,n, where a, y, j are positive constants. (That such is the case follows from
a simple rescaling argument. See [6], e.g.)

Many ecologists are interested in the role of competition in structuring communities
where space or resources are limited; for example, inislands. Consequently, understand-
ing the structure of the solution set to a competition model with diffusion on a bounded
domain such as (1.3) could be viewed as a first step in the development of a theory of
the biogeography of islands based on the population dynamics of the species involved.
(So far, treatments of this problem in the ecological literature view species as present or
absent. The few spatially explicit treatments based on population dynamics (e.g. [5]) do
not incorporate density-dependent competition between species.) The basic approach
we take to the question of existence of componentwise nonnegative solutions to (1.3)
is to consider the a;’s and y;;’s as parameters, and then to express the componentwise
nonnegative solutions to (1.3) in terms of these parameters. It is then natural to view and
analyze the solution set as a subset of the Banach space R"***=) x [C}(2)]" or as a
subset of R” x [C& (Q)1" (if the interaction parameters y;; are fixed). This topological-
functional analytic approach has served numerous investigators (e.g. [6], [11]) well in
the case when n = 2 (about which we shall say more shortly). In the case of general
n, with its implications for community structure, we believe that this approach is likely
even more valuable. There have been comparatively fewer articles in the general case.
Among them we note the contributions of Ali and Cosner ([2]), Cantrell ([3]), Korman
and Leung ([16]), Lopez-Gomez and Pardo ([17]), and McKenna and Walter ([18). of
these, [3] and [17] partake mostly closely of the viewpoint we advocate. However, these
papers emphasize different aspects of the structure of the solution set to (1.3), viewed
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as a subset of R" x [Cé (€)71*, and there is a need to unify them in order to provide a
better foundation for future investigation into the problem. This is the principal aim
of this paper. In order to carry out our objective, we will require new information of
independent interest regarding the solution set to (1.3). Presenting this information is
the secondary aim of this article.

At this point, some observations are in order concerning the cases when n = 1 and
n = 2. First of all, the case when n = 1, namely

—Au = (a—u)y in Q

(1.4)
u=>0 on 92,

is completely understood and a very satisfactory analysis of the set of positive solutions
to (1.4) when a is allowed to range over the real numbers can be based on the celebrated
Rabinowitz Global Bifurcation Theorem ([19]). Indeed, for every a > A'(0), where
21(0) denotes the principal positive eigenvalue for

—~Az=2Az in

z=0 on 0%, (1.5)

there is a unique positive solution to (1.4), which we der_1_c_>te by 6,. In fact, {(a, 8,) :
a > A1(0)} forms a smooth arc in the space R x Cé’*“"(ﬂ) and lim,,,10y+6, = 0 in

C3**($2). Moreover, when considered as a steady-state to

Uy = Au-+(a—uu in 2 x (0, co0)

u=2~0 on 32 x (0, 00), (1.6)
@, is an attractor for solutions to (1.6) with nonnegative nontrivial initial data on .
(For details, see [4], where a far more general class of problems is treated.) However,
once n > 2, the structure of the set of componentwise-positive solutions to (1.3) is not
nearly so well understood, basically because in general uniqueness is completely lost.
Indeed, it is fair to suggest that there is a “quantum leap” in the difficulty of analysis
when attention is shifted from (1.4) to the deceptively simple-looking system

—Au=ula—u—cv], —Av=vld—eu-—v] in Q 17
u=0=v on 98 (1.7)

which accounts for much of the sustained interest in (1.7) by authors too numerous to
list. The article [14] demonstrates how complicated the solution set to (1.7) can be, even
under the additional assumption a = d. Perhaps the most thorough overall analysis
of (1.7) to date is that found in the recent article of Eilbeck, Furter and Lépez-G6émez
([11]), to which the interested reader is directed not only for its content, but also for its
list of references.

Let us now consider [3] and [17]. Each considers (1.3), views the competition
coefficients y;, k # j, as fixed (and small) positive numbers, and attempts to analyze
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the structure of the set of componentwise-positive solutions to (1.3) in terms of the
growth rate parameters (ay, ... , a,), which are allowed to vary over R”. Moreover,
each relies on the Alexander-Antman Global Multiparameter Bifurcation Theorem ([1])
for its theoretical underpinning. The articles differ substantially in terms of emphasis
and degree of specificity. To understand the difference, note first that for (1.3) to
admit a componentwise-positive solution, it must be the case that g, > A1(0), k =
1,...,n, where A1(0) is as in (1.5). (This condition can be interpreted as saying
in order for a species to survive in the presence of competitors, it must first be able
to survive on their absence.) In [17], Lépez-Gémez and Pardo employ a Lyapunov-
Schmidt type argument to establish a bifurcation from the trivial solutions to (1.3) (i.e.,
(a1,...,a,,0,...,0)) to the set of solutions withu;, > Oon Qfork=1,...,r atthe
point (A1(0), ... ,A1(0),0, ..., 0). They then establish a change of topological degree
in order to invoke the Alexander-Antman Multiparameter Bifurcation Theorem ([1]) to
conclude that the bifurcation is global in the Cech cohomological sense described in [1].
In particular, they guarantee the existence of a global continuum of dimension > » at
every point of solutions (ay, ... , a, u1, ..., u,) to (1.3) with u; > 0 on 2 emerging
from (A1(0), ..., A1(0),0,...,0). The results in [3] are considerably less specific but
provide substantial insight into the bifurcation processes at work. Specifically, observe
for example that if (a;, a, ify, L) solves

—Auy = uilay — uy — youzl, —Auy =uzlay —us — yu;] in Q
uy =0=u,; on 992,

then (a;, as, as, ... , ay, iy, i3, 0, ..., 0) solves (1.3) for any choice of (as, ... ,a,) €
R"*~2. Consequently, it might well be expected that the continuum of solutions to (1.3)
with u; > 0 in €2 for all k arise via a succession of n bifurcations, starting from the
trivial solutions, each bifurcation adding one more positive state component u; until all
components are positive. In [3], an abstract result that in principle applies to (1.3) is
proved using the Alexander-Antman Multiparameter Bifurcation Theorem ([1]), wherein
each n-dimensional bifurcating sheet is global with respect to the preceding sheet in the
sense described in [1]. The limitation to using the result of [3] to analyze (1.3) is that
as n becomes larger than 2, the precise character of a sheet of solutions to (1.3) with m
nontrivial components, 2 < m < n, becomes difficult to “pin down” due to the potential
loss of uniqueness, as is noted in [17].

To unify the results of [3] and [17] it suffices to show that if one starts at a solution
@), ...,al,ul, ..., ul)of 1.3) withul > Oon Qfork =1,...,n and can continue
the solution set from there, then one reaches a set of solutions (ai, ... , @y, U1, ... , U,)
of dimension > n — 1 where at least one u; = 0. We call such a phenomenon “antibifur-
cation.” There are obvious limitations on being able to “antibifurcate.” First of all, being
able to start a continuation process at (a?, ... .,a%, ud, ... , u) requires some form of
nondegeneracy at (a‘f, e a,?, u‘f, cee ug); for example, that an appropriate lineariza-
tion of the map corresponding to (1.3) is nonsingular at (@, ... ,a%, 4%, ... , u2). Then
even if continuation is possible, phenomena such as osceolas must be ruled out. (That

is, it is possible that the set of solutions to (1.3) that we start at (a‘l), R a,?, u(l’, e uﬁ)
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contains only solutions with u; > 0 for all k and meets (a, ... ,ad, %y, ... , %) with
1, ... ., 0y) # (u?, . ug).) To get around these obstacles, we adapt to our needs
the multiparameter global continuation theory of Fitzpatrick, Massabd and Pejsachow-
icz ([12]), which is based upon the notion of a complementing map, and formulate an
abstract “antibifurcation” theorem as a corollary to the results of [12]. We then show
that the hypotheses of our result are met in the case of (1.3). We choose to attack the
problem in this fashion for two basic reasons. First, it enables us better to focus on what
additional information regarding (1.3) we need to unify the results of [3] and [17], and
secondly, we are able to obtain in a relatively concise manner a result which is likely
applicable in other contexts.

The remainder of the article is structured as follows. In Section 2, we collect the
information on global continuation theory from [12] which is needed in Section 3 to
formulate and prove our “antibifurcation” theorem. Then in Section 4, we demonstrate
that the hypotheses of the theorem are met in the case of (1.3).

2. Background on complementing maps. In this section, we collect the information
on global continuation theory from [12] which we need to formulate the antibifurcation
results of Section 3. The results in [12] are couched in the language of complementing
maps. To understand what is meant by a complementing map, let X be a real Banach
space, n a positive integer and © an open subset of R” x X, and consider

fO,x)y=x—F(,x),

where F : @ — X is completely continuous. Now f can be viewed as a map into
R” x X. In fact, when f is so viewed, it is a completely continuous perturbation of
the identity, and so the Leray-Schauder degree deg; ¢(f, O, 0) may well be defined.
However, since the range of f is contained in a subspace of R" x X of codimension #,
such a degree is necessarily 0 any time it is defined. So we shall say that a continuous
map g : O — R" which maps bounded sets into bounded sets is a complement for
f : © — X provided the Leray-Schauder degree deg; ¢((g, f), O, 0) is defined and
nonzero, where

(&, N, x)) = (g, x), f(A, x)).

(Since (g, f) is a completely continuous perturbation of the identity in R" x X, the
degree is defined precisely when {(A, x) € O : (g, f)((A, x)) = 0} is compact.)

We shall make strong use of the following criterion for the existence of a complement
for f.
Proposition 2.1 ([12]). Let o € R" and let Oy, = {x € X : (ho, x) € O}. Define
fio 2 Oy = X by fiox) = f(ho,x) = x — F(ko,x). Then f : O - Xis
complemented by g : O — R" given by

g, x) =X — Ao

l:fand Only l:fdegl_,S(f).ov O}\o’ O) # 0.

Remark. When f is continuously Fréchet differentiable, (Ao, x0) € O N f ~1(0) and
%()\0, xg) is a bijection, the classical implicit function theorem implies that f ~1(0) is
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an n-manifold in a neighborhood of (Ag, x0). It is natural to want to extend f~1(0)
beyond such a neighborhood, maintaining as much topological information as possible.
The following two results from [12] address just this issue and form the theoretical basis
for the antibifurcation results of the next section.

Theorem 2.2 (Theorem 2.2, [12]). Let n, X, O and f be as above (f need not be
Fréchet differentiable). Assume that g : O — R" is continuous and maps bounded sets
into bounded sets. Suppose V C O is openand g : V — R" complements f : V — X.
Let K = ((g, f) :v)"10). Then there exists a closed connected subset, C, of £71(0),
whose dimension at each point is at least n such that C N K # @ and such that at least
one of the following properties hold:

(a) C is unbounded.

() CNIO + .

©@CNig N

M\ ¥
\MJ TS J /

Y L (A
\v) \llj 7‘— .
Remark. First of all, note that C refers to the closure of Cin © = OU 9@. Second, when
f is continuously Fréchet differentiable, (ko, x0) € £71(0) and (Ao, Xp) is a bijection,
Theorem 2.2 may be applied to extend f~!(0) pasta sufﬁc1ent1y small neighborhood V
of (Ao, xo). That such is the case follows from Proposition 2.1 and the nondegeneracy

of f at (Ag, xo). When F is defined on O, a sharper result is possible.
Theorem 2.3 (Corollary 2.1, [12]). Let n, X, O and f be as before and assume ad-

L So Adoabionad cee OV Qe 3 - T . o 41 ANV a TR
diti """” thar F i Cv]vf: SOL SN UL upp oS vy O oas o 5ich diii O F JAo\Uiig) wred

deg; ¢( fxo, Oho» 0) # 0. Let the following a priori bound hold: if (s, x,) € O N £~1(0)
and {A,} is bounded, then {x,} is bounded. Then there exists a closed connected subset
C of £~1(0), whose dimension at each point is at least n, so that C N O,, # 9 and so
that at least one of the following two properties hold:

(@) dim(CN30) > n — 1whenn > 1, while C N 3O contains at least two points
whenn = 1.
(b) for each A € R" there is some x € X with (A, x) € C.

Remarks. (i) Theorem 2.3 does not explicitly mention a complementing map. However,
it is evident from Proposition 2.1 that the map g(A, x) = A — Ag is the complement to
f in this case.
(ii) Theorem 2.2 and Theorem 2.3 are particular cases of the main result of [12].
(iii) In neither theorem is there a requirement that © be homeomorphic to R* x X.
This flexibility will be of enormous value to us in formulating an antibifurcation result
that we can apply to system (1.3).

3. Antibifurcation results. Consider the system of equations
Aiui = Ajug +uihi(uy, ..., uy), (3.1
i =1,...,n, where for i = 1,...,n, u; € E;, a real Banach algebra, A; € R,

A; 1 D(A;) € E; — E; is a densely defined closed operator such that A 1. E; - E;
exists and is compact, and ; : Ey X --- X E, — E; is continuously differentiable and
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maps bounded sets into bounded sets with £;(0, ... ,0) = 0. Itis evident that (3.1) is
equivalent to

i = MA w4+ AT wihi Gy - un) (3.2)

We assume that there exist open sets O; € E; satisfying the following:
(H1) 0 € 90;.
(H2) If Aju; = hju; + uihi(uy, ..., u,) for some i with u; € 00;, u; € E;, j # 1,
then u; = 0.
(H3) If I' € R" is bounded, then the set Sp is bounded in E; x - -- x E,, where

Sp= {1, ..., u) €Oy x---Oy:(Al,..., Ay, ti1, ... ,u,) satisfies (3.1)
for some (Ay,...,A,) € '}

(H4) The set R" — {(Ay,...,A,) € R" : thereis (uy,...,u,) € O X +++ X
O, such that (A1, ..., A,, Uy, ..., u,) solves (3.1)} has nonempty interior.
Let

Fi(A, ooy Any U1, en s Up) = )"iA,'_lui +Ai_1(u,-h,-(u1, ceey )
F(A'l’ AR 7A',1, ul, AR ’L£’1>
=(F1()\'1"" ’)\‘,l’ul"" ,u11)5"' 7F"1(A'17"' ’A'll,ul"" 7”,1))'

Then (3.1) is equivalent to f(Ay, ..., Ay, 41, ..., Uy) = 0, where
f(A‘l"" !)\'1171"17"' ’u’l)z (ul"" ?Ll’l)—F(A‘l"" ’)\‘Il1u11"' 7u”)’

Finally, let f5 (A1, ..+ o Agy U1y e-o s Up) ¢ EyX---X E, — Ey X---X E, denote the lin-
earization of f with respect to its last n components at the point (A1, ..., Ay, U1, .. ., Uy).
We may now state the basic result of this section.

Theorem 3.1. Consider (3.1) and assume (H1)-(H4). Suppose that (A%, ...,19) €
R" and that (Y, ...,u%) € Ei X -+ x E, is such that {(uy,...,u;) € Op X -+ X
O, (Ko,...,Kg,ug,...,u”) solves (3.1)} = {(u(l),... ,ug)}. Then iffE()\.?,... s
)»2, u?, e ug) is a linear homeomorphism, there is a closed connected subset C of
R* x O1 x --- x O, of dimension > n at every point with the following properties:
G iyevn s Apy Uy, ..., Uy) € Cimplies (A1, ..., Ap, Uy, ..., Uy,) solves (3.1).
Gy a9,...,A%,4%, ..., ud)ecC.

(iii) There is Ay ... s An, H1, ... 0y € C, where for at least one i, u; = 0.

Remarks. (i) The theorem guarantees that (A9, ..., A%, u9, ..., u%) emanates from
the set of solutions to (3.1) where at least one state component vanishes, which is the
“antibifurcation” phenomenon described in the Introduction.

(ii) The assumption in the statement of Theorem 3.1 that fg(A%, ..., A%, u%, ..., ul)

n?
is nonsingular can be relaxed to the assumption that

deg; (F(AY, ..., A0, .0, B(@S, ..., ud),e),0)#0
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for all & sufficiently small, where B((u}, ... , u2), £) is the & ball about (uf, ... , u?) in
E1 X e X E,,.

(iii) The proof of Theorem 3.1 is to construct a sequence O® of open sets in E; x

- X E, to which Theorem 2.3 applies and then to pass to a limit in an appropriate
sense. Theorem 2.2 is not explicitly referenced in the proof. However, we believe that
having in mind the notion of a complementing map for f and the three global options
for continuation of £~!(0) (listed in Theorem 2.2) is highly desirable (in fact, almost
essential) as background in order to read and comprehend the proof of Theorem 3.1.

Proof. Since fr(AY,..., 29,49, ..., u0) is a linear homeomorphism, the solution set
to (3.1) in a neighborhood of (A, ..., A% 49, ..., 49 is an n-manifold. Moreover,
there are &g > 0 and &5 > 0 so that

@) Bl(u?, g0) X -+ X B, (9, &) € Oy x --- x O,, where B; (u?, €p) is the open &g
ball about u? in E; and

i) forall (A, ..., Ay with | (Ag, ..., &) — (A0, .. A0) | < Bo, (Gt - - , 1) €
(B, 80) x -+ x By, €0)) : (Aly...,hn,tt1,...,u,)solves (3.1)} = @. Let
ko € Z be such that 1/ky < &y. For k > kg, define

O® = Ba((A], ..., A0), 1/k) x B1(uf, €0) X -+ x By(ul, eo)
U [R" — (Br:((A, ... ,)»3), /NI x Oy x -+ x O,

1t 18 not ditficult to see that ()™ 1s open in K" X £; X - -- x E, and that

IO® = [BR,, (9,20, 1/&) x 0(By (S, £0) X -+ x By(ul, 80))]

U [90Bae (G-, 29, 1/80) x [Or % = X Oy = (Bilufi z0) x - x Balul, )]
UIR" — Bre((AY, ... . A), 1/0)] x 8(Oy x -+ x O,)].

Theorem 2.3 is applicable. So there is a closed connected set C; of solutions to (3.1)

of dimension > n everywhere (contained in E(k) CR*"x O x -+ x O,) containing
the point (A9, ..., 2%, u9, ..., u0) and satisfying at least one of the two options of
Theorem 2.3. Suppose now that C; does not contain a point (A], ..., A, uf, ..., u,

with (), ..., up) € 3(O1x---xO,). ThenC, € R" x (O x---x O,). Consequently,
(H4) rules out alternative (b) of Theorem 2.3. Hence C, N 3% has dimension > n — 1

at every point. The choice of ¢, implies that there are no solutions to (3.1) in

Bre (M), ..., A9), 1/k) x 3(B1(ul, g0) x - -+ x B, (u, &p)),

and we are assuming that there are no solutions to (3.1) in C; N ([R” — B« (A9, .. . , kg),
1/k)] x 8(0; x --- x O,)). S0CNIOW C J(Bra((A9, ..., 20),1/k)) x [O; x
X Oy — (B1@Y, g0) x -+ x B, (0, &9))]. Let C = Ussi,Ce-  Assumption (H3)

n?
and the compactness of A,.'I, i =1,...,nimply the existence of (i, uz, ... ,u,) #
@0, ul, ..., ud) such that \9,A3, ... ,A%, %, %, ... ,%,) € C. Since Cx € R" x

ERATE
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O x---x O, forallk,C CR" x Oy x --- x O,. Since {(u1, ... ,up) € Op X -+ X
O A9 A% uy, o, uy) solves 3.1) } = {(d, ..., ud)}, it must be the case that
(y, ..., Uy) € 3(O) x -+ - x O,). Assumption (H2) implies there is an i so thatu; = 0
and the proof is complete.

If we now strengthen the assumptions of the theorem slightly, we can substantially

strengthen its conclusions, as we demonstrate next.

Theorem 3.2. Suppose in addition to the assumptions of Theorem 3.1 that there is an
g1 > 0sothatif| (A1, ..., A)—@9, ... ,)»2) |re < &1, there is a unique (i1, ... , U,) €
O X -+ x Oy such that (A1, ... , Ay, U1, - - - , ity) solves (3.1). Then the continuum C
whose existence is asserted in Theorem 3.1 has the property that C N (R" x 4(O; X
<o x O) has dimension > n — 1.

Proof. We need only to modify the proof of Theorem 3.1. Recall the definitions of o
and &,. Let k € Z* be such that 1/k < min{Z, &}, and let O® be as in the proof of

Theorem 3.1. Choose C relative to ©" via Theorem 2.3. Since 1 /k < &1, the additional
uniqueness hypothesis guarantees that

CALABr (A0, .. ., A0), 1/K)) x {01 x - x Oy — (By (3, £0) X -+ - X By(u3, gD} = 0.

n?

We conclude that either
CNIR" x 3(O; x -+ x Op)]

has dimension > n — 1 or that {(A, ..., A,) : thereis (uy, ..., u,) € Oy x --- x O,
such that (Aq, ..., An, U1,...,u4,) € C} = R". By assumption (H4), the second
alternative necessarily implies the first, and the proof is complete.

4. Applications to n-species diffusive competition models. We now want to apply
the results of the previous section to analyze the componentwise-positive steady-state
solutions to the diffusive Lotka-Volterra competition model

du .
—a-k— = Auy + (ak — U — Zykjuj)uk in € x (0, c0)
! = @.1)
up =0 on 982 x (0, co),
k=1,...,n,where Q C RY is a bounded domain with sufficiently smooth boundary

and ay, yi; are positive constants. As noted in the Introduction, various authors have
considered this problem, among them Ali and Cosner ([2]). Ali and Cosner (I2]) show
that the condition

a > Y _vija; +2'(0) (4.2)
J#k
fork = 1,...,n, is sufficient for the existence of a componentwise-positive steady-

state to (4.1), where A!(0) denotes the principal eigenvalue of —A on €2 subject to zero
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Dirichlet boundary data. If the Vij are considered as given and fixed and (ay, ... , a,)
satisfies (4.2), they demonstrate (see [2, Proposition 4]) that there are functions wy,
k=1,...,n,positive on 2, so thatif (u,, ... , u,)isa componentwise-positive steady-
state for (4.1) associated with (ay, ... , a,), ux > wi. Moreover, it is possible to make
the same choice of the wy for different choices of (ay, ... , a,), S0 longas (ag, ... ,a,)
is taken from a compact subset of the open set described by (4.2).

The arguments used by Ali and Cosner in [2] can be employed to obtain a more
general condition than (4.2) sufficient for the existence of a componentwise-positive
steady-state to (4.1). (See also [7].) Before stating this condition, it is necessary to give
some notation. Suppose that 2 is continuous on £2 and that m (xo) > 0 for some x, € .
Then we define A (m) to be the unique positive number so that the eigenvalue problem

—Az=MAm(x)z in Q
z=0 on 92

-~
)
~

admits a positive eigenfunction and we define 6,, to be the unique positive solution of
the problem
—Aw =mw —w? in Q

“4.4)

w=0 on 9%
provided A;(m) < 1 and to be 0 if A;(m) > 1. (That (4. 3) and (4.4) admit posmve
eolutione g indicated io by now well known and wo 1ofor tho linturusiod 1oador v 14

for details. Note also that A;(1) = A'(0).) Then (4.1) has a componentwise-positive
steady-state provided

M@ =) viba) <1, 4.5)
Jstk
k = 1,...,n. To see that (4.2) implies (4.5), we proceed as follows. Suppose that

—Aw + Z)/kjéajw =aqw in Q
J#k
w=0 on 92

admits a positive solution. Hence

/ | v 2 +nykj9a,<o2 > ak/‘PZ
J#k @

forallg € HO (£2). If we choose ¢ to be an eigenfunction corresponding to the principal
eigenvalue of —A on 2 and use the fact that 6,, < a; (which is a consequence of the
maximum principle), we obtain

2O+ ey = ar
Js#k
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Since A (m) < A(m') if m > m' (see [15]), it follows that if a; > ijékykjaj + A1(0),
then Al(ak - Z#kyijaj) < 1. So (4.5) follows from (4.2).
Suppose now that Zj#ykj <lfork=1,...,n. Letay =a, = --- =a, = a.

Then condition (4.2) holds provided a > l_gf"im > A1(0). On the other hand, if
itk OK.
a > A0) = A (1), A(@) < 1. Hence §, > 0 on Q. Itis immediate from (4.4)

that Ay(a — 6,) = 1. Since Zj?ékykj < 1, Z#kykjeaj = Zj#kykje,, < 6, and so

kl(ak — Z#kykjeaj) <1,k=1,...,nholds whena, = a; = --- = a, = a for
any a > A!(0). So the critical parameter value (ai, ..., a,) = (A1(0),...,A(0)
is a boundary value of the set of (ay, ... ,a,) satisfying (4.5) but not of the set of

(a1, ... ,a,) satisfying (4.2), under the restriction Z#kykj <L k=1,...,n (We
use the term “critical parameter value” since AL(0) is the growth rate threshold in the
model for survival of each species in the absence of competitive interaction.)

Now suppose that (4.5) holds. Let Uy denote the unique positive solution to

—Az = z[ak — Zyij,,j — z] in €2
JEk (4.6)
z=0 on 8L2.

Let (u1,...,u,) be a componentwise-positive steady-state to (4.1). Then for k =
1,...,n

—Auy < (ar — ui)ug

on €2, so that u; < 6,,, and hence

—Auy > ugfar — Z)/kj% — k).
J#k

So uy, is an upper solution for (4.6). Since A; (ak — Zj?ékykj@aj) < 1, thereisa < ay so

that kl(& — }:#kykﬂaj) < 1. Hence there is y > 0 on €2 so that

—Ay=(G—) ¥ibs)y—y inQ
pe
y=0 on d9%2.

Now let0 < g < 1. Then

~Aey) = (@ — ) Vijba,) (y) — ¥(e¥) < (@ — ) _vii;)(e3) — (€07,
e P

and hence &y is a lower solution to (4.6). Since we have ey < u; on Q for ¢ € (0, 1)
and sufficiently small, we have proved the following result.
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Proposition 4.1. Suppose that (4.5) holds, and for k = 1, ... ,n, let U, denote the
unique positive solution to (4.6). Then if (ui, ..., u,) is a componentwise-positive
steady-state solution to (4.1), up > U on Q, fork =1,... ,n.

Remarks. (i) The map (ay, ... , a,) — U, is a continuous map from the open subset of
R” described by (4.5) into C} (2) ([4]). So, if K is a compact subset of the set described
by (4.5), there will be continuous functions wy, k = 1, ... ,n, positive on £2, so that
w > wrfork=1,... ,n,if (uy,... ,u,)is a componentwise-positive steady-state for
(4.1) associated with (a1, ... ,a,), (a1, ... ,a,) € K.

(i) An argument along the lines of the proof of Theorem 3.5 of [8] shows that if
(ai,...,a,) € I, where

=

I'={(an ... a) (@ —=20) =) e — x1<0>>|91%(/ Yidx)?,

Jk JQ
k=1,...,n} = {1 0),..., 2 0n},

then (ay, ... , a,) satisfies (4.5). Here ¥ denotes the positive solution of

~Az=2AY0)z in Q
z=20 on 992
so that fQ ¥2dx = 1 and |$2| denotes the measure of .
Suppose now that (i1, ... ,u,)isa componentwise-positive steady-state solution to

(4.1). Then (x4, ..., u,) satisfies

— Ay — (ak — Uy — Zykjuj)uk =0 in Q

J#k “.7
u, =0 on 0N
for k = 1,...,n. The linearization of the left-hand side of (4.7) with respect to the
state val_*iables at (uy, ..., uy) is the linear map (which can be viewed as mapping say
[c§+°‘ (£2)}" into [C*(£2)]") given by
21 —Az) 21
2 —Azo ay —2u; — Z)’ljuj = Yi2U1 - = Viply 2
s . - J#l
Z.n "‘A.Zn —Vuiliy = Vualhy - - -4y — Zj;énynj uj - 2“11 2
4.8)
Suppose
—Az; a) — 2uy — Z)’U Uj = ViU — Vil 21

= J#l

—Az, ~VnllUn V2l s Qp — Zj;énynjuj — 22Uy, Zn
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Thenfork =1,...,n,

/ |Vzil* — f (ar — ur — Zykjuj)ZI% + / wezy + f ZijUijZk = 0.
Q Q Q Q

J#k J#k

Since —Auy = uk(ak = U — Zj;ékykjuj)’

/ |Vzi)? — /Q(ak - Uy~ Z)’kjuj)zz >0,
Q

ek

so that
Z/ijuk2j2k+/ukzi <0
jokk V2 Q
fork = 1,...,n. Consequently, the map given by (4.8) is a linear homeomorphism

provided that the quadratic form

@) = YO /kajukzjzﬁ/gukzz) (4.9)

k=1 j#k

is positive definite. In [2, Section 3], Ali and Cosner establish conditions on (ay, . . . , @)
which guarantee that (4.9) is positive definite. Their purpose was to establish the unique-
ness of a componentwise-positive steady-state to (4.1) associated to {(ay, ... ,a,). The
conditions they find (Theorem 5 in [2]) describe a subset of the set given by (4.2).
Consequently, we have uniqueness and nondegeneracy (in the sense described above)

of componentwise-positive steady-states associated with (ay, ... , a,) for (a;, ... , an)
throughout this subset.
We now focus on the special case a1 = az = --- = @a, = a > A21(0), and seek
a steady-state solution to (4.1) of the form (@16,, ... ,®,6,) With o > 0 for k =
1,...,n. Substituting into (4.6), we have a solution of the form (164, ... , 0nbs)
(not yet necessarily positive, however) if o + Z#kykjozj =1fork=1,...,n;ie,
provided
1 vz oo oy | ™ 1
yar 1 Yan Y2l _ 1
Yot - Yi,n—1 1 oy 1
can be solved for (¢, . .. , &,). The following result is now immediate.
Proposition 4.2. Suppose that yij, j # k, k = 1,...,n are such that the k + 1
determinants
klh
column
1 Yiz ... Yin 1 1 ... Yin
yar 1 Vou | gwd |Y2L e 1L ... Y

y’ll [ 1 ylll e 1 - 1
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k=1,...,n, are positive. Then (4.1) admits a componentwise-positive steady-state
for(a,...,a),a> A\ 0), of the form (a16,, ..., a,8,) with
kth

column
1 - 1 PN Yin 1 Y12 e Yin
a = Vo1 ... 1 ... VYan / Y21 1 N . (4.10)
Yo ... 1 1 P |

Remark. As y;;, j # k, tends to 0, the numerator and denominator of oy tend to
1. Consequently, the positivity assumptions of Proposition 4.2 are met, among other
instances, if the competitive interaction is relatively weak.

Suppose now in addition that

1 Yiz ... Yin
ya 1 . oy
Yl Vm2 .. 1
is positive definite, by which we mean that the associated quadratic form is positive
definite. Suppose (¢1, ... , ¢,) is a componentwise-positive steady-state to (4.1) corre-
sponding to (@, ... ,a), a > A'(0). Let zx = ¢ — yi, where y, = ax6,. Then

—Az = z¢[a — Zykj(f)j — ] — Yk[ZijZj + 7]
J#k J#k

Hence
/lekIZ - /z,%[a - Z)/kj¢j — ] — fYk[ZyijjZk +z2],
@ 2 Jk CEEY
or equivalently,
—/ )’k[Z)/kajzk +z,%] = / [Vzkl2 — /z,%[a - Zyqubj — ¢k].
@k & @ sk

Since

—Agy — (a - Zykj¢j — ) = 0,
J#k

the variational characterization of eigenvalues implies that

/QIVZk]?' - /in[a =D vgdy — de] = 0,

J#k
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hence

/)’k[ZijZjZk +Zﬂ <0 fork=1,...,n
@k
Since y, = a;0,, with a > 0, this last statement can be expressed

/ Zykjrjrk+rk:]<0 fork=1,...,n,

J#k
where r; = 4/0,z;. Since

1 Yz .. Yin
Y21 1 e Van
Yn1 PN 1
is positive definite,
n
Z(Zykjrjrk +717) =0,
k=1 j#k
so that
LX) 2o
Q=1 jk

Consequently, it must be the case that

/QZ Z)’kﬂ”ﬂ‘k —I—rk = 0.

1 js#k
Since .
Z(Z)/kjl’jrk + 7",%) >0
k=1 jstk
for all x,
Z(Zykjrjrk -+ 7’,?) = 0,
k=1 js#k

which in turn implies r; = 0. So ¢ = o,6,, and we have the following result.

Proposition 4.3. Suppose in addition to the assumptions of Proposition 4.2 that

1 Y2 ... Yin
Y21 1 e Yon
Vnl ce 1
is positive definite. Then (010, ... , x0,) with oy given by (4.10) is the unique
componentwise-positive steady-state to (4.1) for (a1, ... ,a,) = (@, ... ,a),a > A1(0).

Remarks. (i) Proposition 4.3 extends the result on the case n = 2, given in [9]. The
result in [9] has also been extended to the case n = 3 in Proposition 1 of [10].
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(ii) The argument for Proposition 4.3 also shows that the linearization of the left-

hand side of (4.7) at (16, . .. , ®,0,) is a linear homeomorphism from [C2+°‘ ()71 to
[C* ()1

(iii) Suppose in addition to the assumptions of Proposition 4.3 that ) Ve <1
fork = 1,...,n. Then for any a > A!(0), there is an ¢ = &(a) > O so that if
[(ai,...,a,) — (a,...,a)| < e, there is a unique componentwise-positive steady-
state solution for (4.1) corresponding to (aj,...,a;). To see that such is the case,
recall that (a, ..., a) satisfies (4.5) (since Zj#)’kj < 1fork =1,...,n). Choose
go > 0 so that B((a, ... ,a), &) is contained in the set {(a;, ..., a,) : (a1, ... .a,)
satisfies (4.5)}. Then there are continuous functions wy, positive on 2, so that u; >
wy if (u1,...,u,) is a componentwise-positive steady-state to (4.1) associated with
(a1,....,a,) € B((a,...,a),&). The existence of such an e(a) > 0 now follows
from tb uniqueness and nondegeneracy of (¢;8,, ... , &,8,) and the compactness of
(-a)!

We may now apply Theorem 3.2 to the analysis of the steady-states to (4.1) to
demonstrate a synthesis of the approaches to the problem described in [3] and {17]. To
this end, consider (4.7). Fork =1, ... ,n,take E; = C0 (QandOy ={uecE,:u>0
on £2, —@’—‘j < 0 on 92}, Next verify (Hl) —(H4). Observe first that (H1) is apparent and
that (HZ2) is a consequence of the strong maximum principle ([13]). If uq, ..., u, are
nonnegative and

A / A \
Toaumg —— \Ug T wg L./"f”f)“"”
J#k
the maximum principle implies that 0 < u; < a;. Consequently, if I' € R” is bounded
and (u1,...,u,) is a componentwise-nonnegative solution to (4.7) corresponding to
(ai,...,a,) e ', thereis M = M(I") > Osothat || (uy,...,u,) H[C(Q)],,< M. Since
(ul, ... u,,) is a solution to (4.7), elliptic regulanty theory ([13]) now implies there is
aM = M(T) so that || (uy,...,un) licr @y = M, and (H3) obtains. If M1, o0 up)
satisfies (4.7) for some (a1, ... ,a,) withuy > OonQfork =1, ..., n, then

AI(O)/‘uz 5/]\7uk]2 = faku,% —/uz —fuk ZVkJL‘J /akuk
Q Q Q Q Q i

Soa, > A(0) fork =1, ..., n, and (H4) holds.
All that remains is to identify (a?,...,al, u9,...,u) that meets the uniqueness
and nondegeneracy conditions of Theorem 3.2. To do so is to impose conditions

on the size of the competition coefficients y;, j # k. For instance, if y; satis-

fies Proposition 4.3 and Zj#kykj < lfork = 1,...,n, it follows from Propo-
sition 4.3 and the remarks following it that (al, ... ,a%, 9, ..., u%) can be chosen

(@,...,a,010,, ... ,0a,8,)foranya > A!(0). On the other hand, suppose (ay, ... ,a,)
satisfies (4.2). Then if y;; satisfies Theorem 5 of [2] and Z#kykj < 1fork =
1,...,n,wemay choose (a),...,al,u?, ... ,u®) = @, ... @ %1,...,10,), where

(uy, ..., uy) is the unique componentwise-positive solution to (4.7) corresponding to
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(@1, ... ,d,). Ineither case, there will be a continuum C of dimension > n of compo-
nentwise positive solutions to (4.7) containing (a?, ..., a% u9, ..., u2) meeting (in a

set of dimension > n — 1) the solutions to (4.7) having at least one zero component. So
@,...,al,ud, ..., ud) arises through a sequence of bifurcations as described in [3].
Moreover, (A1(0), ..., 11(0),0,...,0) € C, so that C is also as described in [17].

As a final observation, we note that the results of this article are in a sense quantitative
as well as qualitative. The lower bounds we establish in Proposition 4.1 guarantee that
there can be no transition from a componentwise-positive steady-state to (4.1) to a
steady-state to (4.1) with one or more trivial components in the region described by
(4.5). In particular, any such transition occurs outside the region given by (4.2) and

outside the region I described in the Remark following Proposition 4.1.
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